

Sample preparation for sorting @ LSE:

□ Pre-sort preparation:

Cell viability should be checked using trypan blue or a viability dye.

Optimal viability should be $\geq 95\%$.

Minimum starting viability: 70% (below this, consider optimization).

Viability below $<70\%$, high dead cellular percentage, may compromise DNase I effectiveness and could result in poor recovery.

For sensitive cells that are prone to sticking, pre-coat the collection tubes with 1-2% BSA/FBS in PBS-/- (without $\text{Ca}^{2+}/\text{Mg}^{2+}$) for at least 10 seconds while agitation.

□ Most common viability Dye:

DNA-Binding Dyes (Live cells only – impermeable membrane):

- DAPI: 0.1-1.0 $\mu\text{g}/\text{ml}$ (optimal 0.2 $\mu\text{g}/\text{ml}$); add immediately before acquisition; keep on ice
- PI: 1 μg per 100 μl sample; 5-15 min incubation; no wash required

Fixable Viability Dyes (Live or fixed):

- Zombie Dyes: 1:100 to 1:1000 dilution for 1-10 million cells (important stain in PBS without protein {FBS/BSA reacts with amine-reactive dyes}), incubation: 10-15 min at RT or 4°C, protected from light.

□ Samples needed:

Unlabelled cells (unstained).

Single-stained (for each fluorophore).

Mix stained sample (usually what you sort).

Biological control, depending on the experiment.

FMOs (Fluorescence Minos One) - for high parameter panels (mixed stained sample without one fluorophore, needed for each fluorophore).

Calibration beads - consult with us if needed.

□ Cell concentrations:

For a standard 100 μl nozzle size -

- For BD ARIA 5-6 $\times 10^6$ Cells/ml
- For Thermo Bigfoot 3-5 $\times 10^6$ Cells/ml

Volume: For both sorters, the minimum workable volume is 500ul

Nozzle size and pressure:

BD - Aria IIU

Recommended Cell Size (μm)	Nozzle Size (μm)	Typical Pressure (psi)
<15 μm	70 μm	70 psi
15-17 μm	85 μm	45 psi
17-22 μm	100 μm	20 psi
>22 μm	130 μm	11 psi

Thermo - Bigfoot

Recommended Cell Size (μm)	Nozzle Size (μm)	Typical Pressure (psi)
≤ 14	70	60 psi
≤ 20	100	30 psi
≤ 24	120	20 psi
≤ 30	150	8.75 psi
$\leq 40\text{--}50+$ (or rare, large cells)	200	6 psi

Key principle: Nozzle should be $\geq 5\times$ the cell diameter

Sorting tubes:

Suspend cells in the appropriate buffer to prevent cell clumps: For non-adherent cells, a basic suspension buffer of PBS^{-/-} (no calcium, no magnesium) supplemented with **1–2% FBS or BSA** works well. You may need to add **1mM EDTA/EGTA (0.5–2mM)**, especially if you have adherent/sticky cells, as it helps chelate divalent cations that are often required for the formation of cell aggregates. Additionally, if you have a high percentage of dead cells, adding **DNase I** (100 $\mu\text{g}/\text{ml}$ or 10 units/ml) can reduce clumping caused by free DNA (DNase I requires 1–5mM Mg²⁺ {optimal 5mM} as a cofactor). It's strongly recommended to add **25mM HEPES (pH 7.0)** to your sorting buffer (HEPES provides superior pH buffering capacity throughout the sort process. During high-pressure sorting, CO₂-buffered media lose pH stability when exposed to atmospheric conditions, causing the buffer to become basic).

DNase I protocol: concentration varies 10-100 $\mu\text{g}/\text{ml}$ (adjust based on % dead cells)

- Magnesium: Add 5mM MgCl₂ to buffer
- Incubation: 15-30 min at room temperature
- Maintenance dose: 25-50 $\mu\text{g}/\text{ml}$ during sort to prevent re-clumping
- Important: Actin released from dead cells irreversibly inhibits DNase I.

It's important to do the DNase I treatment first and only after the incubation ends to add the EDTA (since both chelate $\text{Ca}^{2+}/\text{Mg}^{2+}$)

Collection tubes:

- Collect up to four/six (Aria/Bigfoot) different populations into 1.5ml and 5ml tubes.
- Up to two/four (Aria/Bigfoot) populations for 15ml tubes and for 2X 50ml tubes.
- Sort into all plate types. 6-well, 12-well, 24-well, 36-well, 96-well, 384-well, PCR plate, etc.

*It's very important to sort into **polypropylene tubes** (and not polystyrene, since it accumulates static electricity)

Collection tubes should contain a collection buffer. The most recommended collection buffer is your **cell culture medium with 10% FBS** or some other serum. Collection tubes should be about 1/3 full of collection media.

Addition of an **antibiotic** (Pen-Strep, Gentamicin, Ampicillin, Erythromycin, etc) to the collection tube is required. Please make sure to add a higher concentration of antibiotic since the collection tube will be diluted from the sheath buffer.

Dilution factor: 1 million sorted cells adds ~1.5ml (70 μm nozzle) to 3.5ml (100 μm nozzle) of sheath fluid.

- *Bring extra Medium/PBSX1 for further dilution of your sample if needed
- *It's always recommended to include live/dead dye: DAPI, PI, Hoechst, zombie, etc.

Filtration: Filter the cells through a nylon mesh. The mesh size depends on the size of the nozzle:
40 μm mesh for 70 μm nozzle (BD Falcon™ cell strainers ref. 352340)

70 μm mesh for 100 μm nozzle (BD Falcon™ cell strainers ref. 352350).

The best option is the Falcon® 5 mL Round Bottom Polystyrene Test Tube that comes with an in-built 35um filter (Corning ref. [352235](#)).

* **Take into consideration your cell size; do not use a mesh size similar to your cell size!**

Filtrations:

2 Filtrations are needed:

1. After washing the cells from staining
2. Immediately before entering the cells into the sorter

Sorting Conditions:

If you bring your cell in at 4°C, it is advisable to keep the collection tubes at the same temperature, since thermal shock can significantly reduce viability. However, we can also warm the sorter to 37°C in accordance with your cell's needs, maintaining consistent temperature throughout the workflow.

Please inform us of what sorting conditions you'll require.

Post sorting: It's recommended to centrifuge the cells and resuspend them in their appropriate growth media (with antibiotics)

Cell counting after sort: Recommend post-sort assessment of viability and yield to calculate recovery.

Recovery rate: (sorted cells counted / theoretical cells) × 100, typical recovery: 75-95%, with viability >90%

For any other questions, please feel free to consult with us:

FACS unit – facs.lse@technion.ac.il

Dr. Aviv Lutaty – Avivlutaty@technion.ac.il, 073-378-3676

Mr. Yousef Mansour - Yousefm@technion.ac.il, 073-378-1370

References:

1. Cossarizza A et al. (2017, 2021) European J Immunology - "Guidelines for the use of flow cytometry and cell sorting in immunological studies" (1600+ citations)
2. Arnold L & Lannigan J (2010) Current Protocols in Cytometry - "Practical issues in high-speed cell sorting"
3. McKinnon KM (2018) PMC - "Flow Cytometry: An Overview" (1600+ citations)
4. Reichard A & Asosingh K (2018) PMC - "Best Practices for Preparing a Single Cell Suspension" (230+ citations)
5. Valle A et al. (2012) Nature Reviews Immunology - "Standardization in flow cytometry: correct sample handling"
6. <https://www.kumc.edu/documents/flow/KUMC-Flow-Core-Sorting-Best-Practices.pdf>
7. <https://flowcyt.rutgers.edu/wp-content/uploads/2019/11/Cell-Sorting-Recommendations.pdf>
8. <https://www.biotech.cornell.edu/sites/default/files/2020-05/Sorting%20Rules%20BRC%20Flow%20Facility%2020200421.pdf#page=1.72>