Emission Fingerprinting

Guided tour through:

- Configuration
- Defining spectral range
- Scan control settings
 - optimal pinhole size
 - detector gain, amplitude offset
 - range indicator
- Emission Fingerprinting
 - 1. Acquire Lambda stack
 - 2. Reference Spectra
 - using ROI's
 - using Spectral Database
 - 3. Unmix

LSM 510 META sideport configuration on Axiovert 2000 and with 2-Flatscreen monitors

Getting started

Configuration

Scanning Parameters

4) Select dynamic range

8 bit yields 256, 12 bit 4096 levels

NOTE: Images for publication should be acquired using 12 bit and high number of pixels

3) Enter scan speed and select *Scan average* (slower scan speed and averaging gives best signal/noise ratio)

Adjusting Pinhole

1 Airy units produces best signal/noise ratio Pinhole adjustment changes "optical slice" (i.e.confocality)

NOTE: Pinhole 1 controls all 32 META detector elements

LSM 510 META EF-Guided Tour

-5-

ZEK

Acqusition

Emission Fingerprinting- Lambda stack

Lambda stack (22 elem ents, 3 passes)

(Gallery M ode display)

Emission Fingerprinting- Range Indicator

Dr. Solveig Hehl, TASC Carl-Zeiss Jena

Emission Fingerprinting- Set Gain & Offset

Emission Fingerprinting - correct Offset and Gain

Emission Fingerprinting - using ROI's

3) Click Linear Unmixing

 Define different Region's of Interest (corresponding spectra are displayed in graph on the left)

Dr. Solveig Hehl, TASC Carl-Zeiss Jena

LSM 510 META EF-Guided Tour

Emission Fingerprinting - using ROI's

Emission Fingerprinting - using Spectral DB

Emission Fingerprinting - using Spectral DB

NOTE: Reference spectra will be normalized to the maximum intensity and can be displayed either as spline curve or raw data points (use right mouse button for switching)

Emission Fingerprinting - using Spectral DB

Emission Fingerprinting - using Spectral DB

Original Lambda stack...

...separation into individual channels after linear unmixing

Online Fingerprinting

Emission Fingerprinting can be preformed online avoiding the accumulation of possibly unnecessary data (lambda stacks) if reference spectra are available.

Emission Fingerprinting

What is Emission Fingerprinting?

- 3-step-method for (1) recording, (2) analysis and (3) separation of emission signals in multifluorescence imaging
- Separation of individual emissions based on the recording of spectral signatures and a linear unmixing procedure using reference spectra

What is it good for?

- Separation even of fluorochomes with widely overlapping emission spectra
- Separation of fluorochromes that are excited by the same laser line (in singlephoton and multiphoton microscopy)
- Elimination of background- and autofluorescence